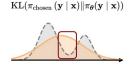


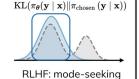
Insight: Directly conducting imitation learning

Without Bradley-Terry assumption

Framework: Unlock family of Alignment Algorithms


$$\begin{split} \max_{\boldsymbol{\theta}} & \mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x})} \bigg[\log \frac{\pi_{\text{chosen}}\left(\mathbf{y} \mid \mathbf{x}\right)}{\pi_{\text{ref}}(\mathbf{y} \mid \mathbf{x})} - \log \frac{\pi_{\boldsymbol{\theta}}(\mathbf{y} \mid \mathbf{x})}{\pi_{\text{ref}}(\mathbf{y} \mid \mathbf{x})} \bigg] = \\ & \mathbb{E}_{\pi_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x})} [\log r(\mathbf{x}, \mathbf{y})] - \text{KL}(\pi_{\boldsymbol{\theta}}(\mathbf{y} \mid \mathbf{x}) \| \pi_{\text{ref}}(\mathbf{y} \mid \mathbf{x})) \end{split}$$

The reward is about the density ratio


Table 1: Summary of the variants of DIL with different h-functions for Bregman divergence: $\mathcal{L}_{\mathrm{DIL}}(\theta) = \mathbb{E}_{\pi_{\mathrm{chosen}}(\mathbf{y}|\mathbf{x})}[\ell_1(f_{\theta})] + \mathbb{E}_{\pi_{\mathrm{rejected}}(\mathbf{y}|\mathbf{x})}[\ell_{-1}(f_{\theta})]$ as a function of log ratio $f_{\theta} = \log(\pi_{\theta}(\mathbf{y}\mid\mathbf{x})/\pi_{\mathrm{ref}}(\mathbf{y}\mid\mathbf{x}))$.

-*chosen(\$ \$/t-*(\$0)]*rejected(\$ \$/t-	1(00)1	- 200(0 (0 1)/
h-Bregman Density Ratio Estimation	h-function	$\ell_1(f_\theta)$	$\ell_{-1}(f_{\theta})$
	$h(r) = (r - 1)^2/2$	$-e^{f_{\theta}}$	$\frac{1}{2}e^{2f_{\theta}}$.
BCE (Hastie et al., 2009)	$h(r) = r \log r - (r+1) \log(r+1)$	$log(1 + e^{-f_\theta})$	$log(1 + e^{f_\theta})$

SFT vs RLHF: Different Directions

SFT: mass-covering

On a Connection Between Imitation Learning and RLHF

RLHF is Barely RL, and Secretly Performs Imitation Learning

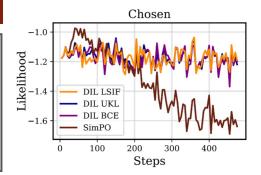
Key Finding: RLHF performs imitation learning, not RL!

Proposition 1. Suppose the chosen response distribution $\pi_{\text{chosen}}(\mathbf{y} \mid \mathbf{x})$, the EBM $\pi_{\phi}(\mathbf{y} \mid \mathbf{x})$, and the model $\pi_{\theta}(\mathbf{y} \mid \mathbf{x})$. KL-regularized RLHF with $\beta = 1$ can be viewed as the following problem:

$$\left[\min_{\pi_{\boldsymbol{\theta}}} \mathrm{KL}(\pi_{\boldsymbol{\theta}} \parallel \pi_{\boldsymbol{\phi}}^*) \right] \text{s.t.} \quad \pi_{\boldsymbol{\phi}}^* = \arg\min_{\pi_{\boldsymbol{\phi}}} \mathrm{KL}(\pi_{\text{chosen}} \parallel \pi_{\boldsymbol{\phi}}),$$

where $\pi_{chosen}(\mathbf{y} \mid \mathbf{x}) = \pi_{\boldsymbol{\theta}}(\mathbf{y} \mid \mathbf{x}) = \pi_{\boldsymbol{\theta}}(\mathbf{y} \mid \mathbf{x})$ is the equilibrium.

$$\pi_{\text{chosen}}(\mathbf{y} \mid \mathbf{x}) \xrightarrow{\text{reward modelling}} \pi_{\phi}(\mathbf{y} \mid \mathbf{x}) \xrightarrow{\text{policy optimization}} \pi_{\theta}(\mathbf{y} \mid \mathbf{x})$$



Result: DIL Outperforms SOTAs across Benchmarks

M	$(odel (\downarrow) / Benchmark (\rightarrow)$	MMLU-PRO	ВВН	MUSR	MATH	GSM8K	ARC
	SFT	31.00	46.16	41.27	3.70	46.32	60.15
Se	DPO (Rafailov et al., 2024)	31.58	47.80	40.48	4.53	38.67	64.42
m,	SLiC (Zhao et al., 2023)	31.11	46.53	40.55	3.92	48.82	61.43
89 98	f-DPO (Wang et al., 2024a)	30.85	47.55	40.39	4.37	39.55	62.85
ć.	IPO (Azar et al., 2024)	30.18	46.78	39.58	4.02	22.67	62.88
LLama3-8B-Base	KTO (Ethayarajh et al., 2024)	31.16	47.92	40.24	4.13	38.99	63.17
Ħ	CPO (Xu et al., 2024b)	30.95	47.17	41.59	4.25	46.93	61.69
	SimPO (Meng et al., 2024)	31.61	48.38	40.08	4.23	31.54	65.19
	DIL w/ LSIF	32.22	48.78	42.75	4.68	48.98	65.37

Dataset (\rightarrow)	TL;DR Summarization			Anthropic-HH			
$\mathbf{Method}\left(\downarrow\right)\big/\mathbf{Metric}\left(\to\right)$	vs SFT	vs Chosen	Average	vs SFT	vs Chosen	Average	
DPO (Rafailov et al., 2024)	71.22	57.58	64.40	69.32	59.35	64.34	
SLiC (Zhao et al., 2023)	68.61	55.72	62.17	65.52	57.71	61.62	
f-DPO (Wang et al., 2024a)	66.19	51.37	58.78	60.21	52.38	56.30	
IPO (Azar et al., 2024)	72.17	56.51	64.34	63.19	55.12	59.16	
CPO (Xu et al., 2024b)	73.13	58.89	66.01	72.30	63.39	67.86	
SimPO (Meng et al., 2024)	69.71	54.38	62.05	67.85	57.51	62.68	
DIL w/ LSIF	75.47	60.25	67.86	73.32	65.02	69.17	

